Chapter 17

Tools of Monetary Policy

The Market for Reserves and the Federal Funds Rate

- federal funds rate (i_{ff}) = interest rate on overnight loans of reserves from one bank to another
- Demand curve for reserves
 - reserves are composed of required reserves and excess reserves:

R = RR + ER

- if i ψ , the opportunity cost of excess reserves falls, hence ER \uparrow
- thus, the demand curve slopes down

17-2

The Market for Reserves and the Fed Funds Rate

- Supply curve for reserves
 - banks can get loans from the nonborrowed reserves R^n of other banks or from the Fed (discount loans DL):

 $R^s = R^n + DL$

- if i_{ff} is below i_d (the interest rate charged by the Fed), then there is no discount borrowing: $B^{s} B^{n}$
- \blacksquare also, the supply curve is flat (infinitely elastic) at i_d : if $i_{\it ff}>i_{\it ff}$, banks get only discount loans
- Market equilibrium
 - $\blacksquare R^d = R^s$ at i_{ff}^*

17-

Open Market Operations

- open market purchases: R \uparrow and MB \uparrow \Rightarrow Ms \uparrow \Rightarrow short-term i \checkmark
- \blacksquare open market sales: R \lor and MB \lor \Rightarrow Ms \lor \Rightarrow short-term $i \land$
- two types of operations:
 - dynamic meant to change the monetary base
 - defensive meant to offset other factors affecting the monetary base (typically uses repos)
- advantages of open market operations
 - Fed has complete control
 - flexible and precise
 - easily reversed
 - implemented quickly

17-8

Discount Loans

- discount window = Fed allowing banks to take discount loans
- Types of discount loans
 - primary credit = backup source of funds for healthy banks (the interest rate i_d, called discount rate, is usually 100 basis points=1% higher than i_f)
 - secondary credit given to banks in financial trouble (interest rate = i_d + 0.5%)
 - seasonal credit given to small banks in vacation or agricultural areas

Discount Loans (cont.)

- Lender of Last Resort function
 - to prevent banking panics, since the FDIC fund might not be big enough and large deposits are not fully covered (for example, the case of Continental Illinois
 - to prevent nonbank financial panics (for example, the 1987 stock market crash, or the September 11 terrorist incident)
 - but this also causes moral hazard problems

17-10

Discount Policy

- Advantages
 - role of lender of last resort
- Disadvantages
 - confusion interpreting discount rate changes
 - fluctuations in discount loans cause unintended fluctuations in money supply
 - not fully controlled by Fed

17-12

Reserve Requirements

- Advantages
 - powerful effect (both on reserves/money supply and on the federal funds rate)
- Disadvantages
 - small changes have very large effect on money supply
 - raising them causes liquidity problems for banks
 - frequent changes cause uncertainty for banks
 - they are effectively a tax on banks

17 12

Channel/Corridor System for Setting Interest Rates in Other Countries

- some countries (Canada, Australia, New Zeeland) eliminated required reserves, but the central bank still has control over overnight interbank interest rates
- the channel-corridor system at work:
 - the central bank sets up a lending facility: stands ready to lend overnight any amount at the lombard rate i, (usually 0.25% higher than the target rate)
 - the central bank pays a fixed interest rate i_r (usually 0.25% lower than target rate) on any reserves banks decide to keep at the central bank
- \blacksquare thus, the federal funds rate $i_{f\!\!f}$ lies between i_r and i_l

17-14

Channel/Corridor System for Setting Interest Rates in Other Countries (cont.) Overright Interest Rate, i_{il} In the channel/corridor system standing facilities result in a step function supply curve, R^{s} . If demand curve shifts between R^{d} and R^{d} and