Capital Allocation Between The Risky And The Risk-Free Asset

Chapter 7

Investment Decisions

- capital allocation decision = choice of proportion to be invested in risk-free versus risky assets
- asset allocation decision = choice of type of assets to invest in (e.g., bonds, real estate, stocks, foreign assets etc.)
- security selection decision = choice of which particular security to invest in

Allocating Capital: Risky & Risk Free Assets • examine risk/return tradeoff • demonstrate how different degrees of risk

- demonstrate now different degrees of risk aversion will affect allocations between risky and risk free assets
- consider the optimal risky portfolio as given and analyze the allocation decision between "the" risky portfolio (treated as *one* asset) and the risk-free asset (T-bills)
- rate of return:

 $r = \frac{P_1 - P_0 + D_1}{P_0}$

The Risk-Free Asset

- technically, the risk-free asset is default-free and without inflation risk (a price-indexed default-free bond)
- in practice, Treasury bills come closest, because:
 - short term means little interest-rate or inflation risk
 - default risk is practically zero, since the government would no default

Notation

- r_f = rate of return on the risk-free asset
- r_p = rate of return on the risky portfolio
- r_c = rate of return on the complete portfolio (including both the risk-free asset and the risky portfolio)
- y = proportion of the investment budget to be placed in the risky portfolio
- σ_p = standard deviation of the return on the risky portfolio
- σ_c = standard deviation of the return on the complete portfolio

Characterization of the Complete Portfolio

- rate of retain $r_c = yr_p + (1 - y)r_f$ ■ expected rate of return
 - $$\begin{split} \mathbf{E}(r_c) &= y \ \mathbf{E}(r_p) + (1-y) \ \mathbf{E}(r_f) = y \ \mathbf{E}(r_p) + (1-y)r_f \\ &= r_f + y [\mathbf{E}(r_p) r_f] \end{split}$$

• variance

$$\sigma_c^2 = y^2 \sigma_p^2 + (1 - y)^2 \cdot 0 + 2y(1 - y) \operatorname{Cov}(r_p, r_f)$$

 $= y^2 \sigma^2$

■ standard deviation $\sigma_c = y\sigma_p$

